What is a Hydraulic Jump?

Controlling the flow of water is one of the fundamental objectives of modern infrastructure, from flooding rivers to irrigation canals, stormwater drainage facilities to aqueducts and even the spillways of dams. So engineers need to be able to predict how water will behave in order to design structures that manage or control it. And fluids don’t always behave the way you’d expect. Hey, I’m greedy. And this is practical engineering. On today’s episode, we’re talking about one of the most interesting phenomena in open channel flow. The hydraulic jump.

The study of how water with a free surface behaves that is not confined within a pipe is known as open channel hydraulics. This field is especially useful in civil engineering, where structures can’t usually be tested at scale. We can’t build a dam, cause a flood to see how well the spillway works and then rebuild it if the performance isn’t up to standards. Instead, engineers need to be able to predict how well hydraulic structures will perform before they’re ever constructed. This is the definition of engineering to take theoretical knowledge of science and physics, in this case, fluid dynamics, and apply that information to make decisions about the real world. One of the most important parameters in fluid dynamics is velocity or how quickly the water flows. Sometimes velocity is a good thing, like when you’re trying to move a lot of water quickly. For example, in a flood, sometimes velocity is a bad thing, like if you’re trying to avoid erosion. Either way, it’s almost always a key criterion when designing hydraulic structures. But the velocity of flow isn’t the only velocity that’s important in fluid dynamics. We also care about the velocity of waves or how quickly pressure disturbances in a fluid can travel. If the flow velocity is exactly equal to the wave speed, we call the flow critical. But it’s more likely that these two velocities are different. Slow, tranquil flow conditions are called subcritical. In this case, the wave speed is faster than the flow velocity. You can see that the waves can travel against the flow direction. Because of this, the depth is controlled by downstream conditions. You can see that anything I do upstream isn’t changing the depth of this flow. Fast moving flow is called supercritical. In this case, the flow velocity is faster than the wave speed. You can see that the waves are unable to propagate upstream. Supercritical flow is controlled on the upstream side, so nothing I do downstream affects the depth of the supercritical flow above.

A flow profile can naturally transition from subcritical to supercritical. That is, from slow to fast. For example, if a channel changes to a steeper slope or a cliff, many types of flow measurement devices rely on forcing a flow to transition from sub to supercritical because there will be a unique relationship between the flow rate and the depth for a given geometry. Maybe we’ll talk more about flow measurement and a future video. But when flow transitions the other direction, when a fast moving supercritical flow transitions to a more tranquil sub critical condition, something much more interesting happens a hydraulic jump. The classic demonstration of a hydraulic jump can be seen at the bottom of your sink. Open the faucet and watch how the flow behaves. You can see the fast moving flow right is the stream hits the sink and the abrupt transition of the hydraulic jump to a slower moving flow. But the sink demo is the best example because it happens due to surface tension, not gravity. Plus, it’s kind of boring. So I built this flume in my garage to give you a better look at the hydraulics. If I open the upstream gate by just a little bit, I can create supercritical flow in the flume. Now, if I obstruct the area downstream, I can force the flow to transition into subcritical right where the flow transitions. You can clearly see the hydraulic jump. This phenomenon happens naturally in certain locations. Steep mountain streams often have supercritical flow crashing into rocks and changing slopes, creating white water and turbulence and the occasional hydraulic jump. Also, a tidal bore occurs when an incoming tide forms a wave that travels upstream against a river. These events only occur in a few places across the world, but it’s fascinating if you get to see it in person. In many cases, the bore travels as a moving hydraulic jump, similar to what you see here in my flute. But jumps aren’t just natural phenomena. They’re important in hydraulic structures as well, especially for energy dissipation. A major part of the job of a civil engineer working in the field of hydraulics is designing against erosion from the flow of water. When we try to control the flow of water, that often leads to the potential of having fast moving, erosive conditions. For example, when we put water in a culvert rather than allowing it to flow over a roadway. It can pick up speed in the pipe.

When we line a ditch or creek with concrete, the smoothness speeds up the flow compared to natural conditions. And when we make releases from a reservoir behind a dam into a spillway, the water can come roaring down at extremely high velocities. This supercritical flow can cause erosion and eventually lead to failure of the structure. So most hydraulic structures will be equipped with some form of energy dissipate on the downstream end to reduce the velocity of flow and protect against erosion. There are all kinds of hydraulic energy dissipates, but for large structures like spillways, the most common types rely on the formation of a hydraulic jump. Because a hydraulic jump causes so much turbulence, it’s able to effectively dissipate hydraulic energy as heat. So many energy dissipates. Also called stilling basins are designed to force a hydraulic jump to occur. There are many types of stilling basins, but most use different combinations of blocks in cells and overall geometry to control how the hydraulic jump forms. The turbulence stays within the stilling basin, with the objective of having smooth, tranquil, subcritical flow, leaving downstream, minimizing the potential for erosion which would otherwise threaten the integrity of the structure. Hydraulic jumps don’t just serve utilitarian purposes, recreational whitewater courses can be found across the world, and many of these courses make use of hydraulic jumps as artificial rapids. In fact, many Kyak parks started out as obsolete. Dams in need of removal. A perfect opportunity for replacement with something more beneficial to the community and the environment. Freestyle kayaking, also known as play boating, involves performing tricks in a single spot play. Boaters use natural and artificial hydraulic jumps to stay in one spot. I’ve never tried this myself, but it looks like a lot of fun. Next time you see water flowing in an open shale, try to identify if it’s sub or supercritical and keep your eye out for hydraulic jumps. Thanks to Naude VPN for sponsoring this video, I’m really happy to share the sponsor because in a small way at least, I owe my marriage to VPE ends. If you’re not familiar, a virtual private network or VPN is a way to tunnel your web traffic so that it can’t be seen or recorded from the outside. Well, before my wife and I were married, she spent two years living and working in Beijing, China. China’s heavy handed regulation of the Internet, sometimes called the Great Firewall, made it difficult for us to stay in touch.

During this time, we used a VPN to get around the censorship of certain websites and services we use to communicate. I remember then that it was so complicated and complex to get it running. Now I use Naude VPN and they’re offering a big discount to you at Naude VPN dotcom practical engineering watchhouse. Simple and quick. It is for me to completely protect my internet traffic. It’s so easy. There’s almost never a time I’m not connected through a VP and these days they also have an extension for Chrome and an app for your phone as well.

Leave a comment

Your email address will not be published. Required fields are marked *